加泰罗坦语言理解基准(Club)包括代表不同NLU任务的各种数据集,以便在一般语言理解评估(胶水)示例之后,可以准确评估语言模型。它是Aina和Plantl的一部分,两项公共资金举措,以赋予人工智能时代的加泰罗尼亚语言。
translated by 谷歌翻译
近年来,在我们称之为社交媒体的意见生态系统中,极端主义观点的兴起。允许在线极端主义坚持会带来可怕的社会后果,并不断探索减轻它的努力。积极的干预措施,受控信号,以提高某些意见的目的增加了对意见生态系统的关注,这就是缓解途径的一种途径。这项工作提出了一个平台,通过意见市场模型(OMM)测试积极干预措施的有效性,这是一个在线意见生态系统的两层模型,共同考虑了开幕式的相互作用和积极干预的作用。第一层使用多元离散时间霍克斯流程模拟了意见注意市场的规模;第二层利用市场份额吸引模型来模拟合作的意见并竞争市场份额,但注意力有限。在合成数据集上,我们显示了我们提出的估计方案的收敛性。在Facebook和Twitter讨论的数据集中,其中包含有关丛林大火和气候变化的中等和极右翼意见,我们在最先进的表现以及揭示潜在意见互动的能力上表现出了优越的预测性能。最后,我们使用OMM来证明主流媒体报道的有效性是抑制极右翼意见的积极干预措施。
translated by 谷歌翻译
先进的Ligo和先进的处女座地面干涉仪有望探测前所未有的大量空间,从而增强了观测值的发现能力,甚至是重力波发射器的新来源。在这种情况下,高度优化的重力波检测算法的发展至关重要。我们提出了一个新型的分层框架,用于实时检测受语音处理技术启发的引力波,以及在本实施中,基于一种最新的机器学习方法,涉及遗传编程和神经网络的杂交。新提出的框架的关键方面是:结构良好的分层方法和低计算复杂性。本文描述了框架的基本概念和前三层的推导。即使在当前的实现中,这些层是基于使用机器学习方法得出的模型,拟议的分层结构具有普遍的性质。为了训练和测试模型,我们在合成高斯噪声中使用了模拟的二进制黑洞重力波形,代表了高级Ligo灵敏度设计。与更复杂的方法(例如卷积神经网络)相比,我们的框架,即使使用论文中描述的简单地面模型,具有相似的性能,但计算复杂性较低,模块化程度较高。此外,对短期特征的潜在剥削使新框架的结果几乎独立于引力波信号的时间位置,从而在第二代干涉仪中简化了其在实时多层管道中对重力波检测的实时多层管道的未来剥削。
translated by 谷歌翻译
这项工作引入了一种新颖的多变量时间点过程,部分均值行为泊松(PMBP)过程,可以利用以将多变量霍克斯过程适合部分间隔删除的数据,该数据包括在尺寸和间隔子集上的事件时间戳的混合中组成的数据。 - 委员会互补尺寸的事件计数。首先,我们通过其条件强度定义PMBP过程,并导出子临界性的规律性条件。我们展示了鹰过程和MBP过程(Rizoiu等人)是PMBP过程的特殊情况。其次,我们提供了能够计算PMBP过程的条件强度和采样事件历史的数字方案。第三,我们通过使用合成和现实世界数据集来证明PMBP过程的适用性:我们测试PMBP过程的能力,以恢复多变量霍克参数给出鹰过程的样本事件历史。接下来,我们在YouTube流行预测任务上评估PMBP过程,并表明它优于当前最先进的鹰强度过程(Rizoiu等人。(2017b))。最后,在Covid19的策划数据集上,关于国家样本的Covid19每日案例计数和Covid19相关的新闻文章,我们展示了PMBP拟合参数上的聚类使各国的分类能够分类案件和新闻的国家级互动报告。
translated by 谷歌翻译
在文献中的超参数调谐中,许多最近的解决方案依赖于低保真观察(例如,使用子采样数据集或短时间训练)来推断在执行完整培训时使用良好的配置。其中,由于其效率和理论上可提供的鲁棒性,HyperBand可以说是最受欢迎的解决方案之一。在这项工作中,我们介绍HyperJump,一种新的方法,在超带的强大的搜索策略中构建,并通过基于新的基于模型的风险分析技术来补充,通过跳跃对低风险配置的评估来加速搜索,即可能的配置超支丢弃。我们在一套超参数优化问题上评估HyperJump,并表明它在与...相比时,在顺序和平行部署中提供了一阶数量幅度提升,无论是在各种深度学习和基于内核的学习问题上超细以及艺术优化器的多个状态。
translated by 谷歌翻译
The framework of variational autoencoders allows us to efficiently learn deep latent-variable models, such that the model's marginal distribution over observed variables fits the data. Often, we're interested in going a step further, and want to approximate the true joint distribution over observed and latent variables, including the true prior and posterior distributions over latent variables. This is known to be generally impossible due to unidentifiability of the model. We address this issue by showing that for a broad family of deep latentvariable models, identification of the true joint distribution over observed and latent variables is actually possible up to very simple transformations, thus achieving a principled and powerful form of disentanglement. Our result requires a factorized prior distribution over the latent variables that is conditioned on an additionally observed variable, such as a class label or almost any other observation. We build on recent developments in nonlinear ICA, which we extend to the case with noisy or undercomplete observations, integrated in a maximum likelihood framework. The result also trivially contains identifiable flow-based generative models as a special case.
translated by 谷歌翻译